Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
ACS Omega ; 6(40): 26311-26317, 2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1493020

ABSTRACT

A proof of concept is demonstrated concerning self-charging fabrics for air filtration purposes based on common household fibers. Triboelectrically dissimilar fibers, such as wool and polyester, were interwoven into a single-layer fabric, so that local charges can be developed and partially retained at the junctions of the insulating fibers as a result of their constant frictional contact. Voluminous fibers that are typically used for knitting were chosen here, leveraging their broad availability and ease of use, so that they can be handwoven into a leak-free fabric, preventing unfiltered air to pass through directly. When tested for PM2.5 and PM10 removal, this hybrid fabric outperforms a single-material fabric made similarly from household cotton yarns. And its pressure drop and filtration efficiency were found to be in between those of a common surgical mask and a KN95 mask.

2.
Int J Nanomedicine ; 16: 5053-5064, 2021.
Article in English | MEDLINE | ID: covidwho-1362162

ABSTRACT

BACKGROUND: High levels of oxidants, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), are typical characteristics of an inflammatory microenvironment and are closely associated with a various inflammatory pathologies, eg, cancer, diabetes, atherosclerosis, and neurodegenerative diseases. Therefore, the delivery of anti-inflammatory drugs by oxidation-responsive smart systems would be an efficient anti-inflammatory strategy that benefits from the selective drug release in an inflammatory site, a lower treatment dose, and minimizes side effects. PURPOSE: In this study, we present the feasibility of an oxidation-sensitive PEGylated alternating polyester, methoxyl poly(ethylene glycol)-block-poly(phthalic anhydride-alter-glycidyl propargyl ether) (mPEG-b-P(PA-alt-GPBAe)), as novel nanocarrier for curcumin (CUR), and explore the application in anti-inflammatory therapy. METHODS: The copolymers used were obtained by combining a click reaction and a ring-opening-polymerization method. CUR was loaded by self-assembly. The in vitro drug release, cytotoxicity toward RAW 264.7 cells and cellular uptake were investigated. Furthermore, the anti-inflammatory effects of CUR-loaded polymeric nanoparticles (NPs-CUR) were investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and tested in a murine model of ankle inflammation. RESULTS: Fast drug release from NPs-CUR was observed in trigger of 1 mM H2O2 in PBS. Compared with NPs and free drugs, the significant anti-inflammatory potential of NPs-CUR was proven in activated RAW 264.7 cells by inhibiting the production of TNF-α, IL-1ß, and IL-6 and increasing the level of an anti-inflammatory cytokine IL-10. Finally, a local injection of NPs-CUR at a dose of 0.25 mg/kg suppressed the acute ankle inflammatory response in mice by histological observation and further reduced the expression of pro-inflammatory cytokines in the affected ankle joints compared to that of free CUR. CONCLUSION: Both the significant in vitro and in vivo anti-inflammatory results indicated that our oxidation responsive polymeric nanoparticles are promising drug delivery systems for anti-inflammatory therapy.


Subject(s)
Nanoparticles , Polyesters/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Curcumin/pharmacology , Drug Carriers , Drug Delivery Systems , Drug Liberation , Hydrogen Peroxide , Mice , Pharmaceutical Preparations , Polyethylene Glycols
4.
Nat Commun ; 11(1): 5172, 2020 10 14.
Article in English | MEDLINE | ID: covidwho-963670

ABSTRACT

The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (-1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic's effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.


Subject(s)
Air Pollutants/analysis , Carbon Dioxide/analysis , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Air Pollutants/economics , Betacoronavirus , COVID-19 , Carbon Dioxide/economics , Coronavirus Infections/economics , Coronavirus Infections/prevention & control , Environmental Monitoring , Fossil Fuels/analysis , Fossil Fuels/economics , Humans , Industry/economics , Nitrogen Dioxide/analysis , Nitrogen Dioxide/economics , Pandemics/economics , Pandemics/prevention & control , Pneumonia, Viral/economics , Pneumonia, Viral/prevention & control , SARS-CoV-2
5.
Appl Energy ; 282: 116179, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-926773

ABSTRACT

In response to the spread of COVID-19, China implemented a series of control measures. The causal effect of these control measures on air quality is an important consideration for extreme air pollution control in China. Here, we established a difference-in-differences model to quantitatively estimate the lockdown effect on air quality in the Beijing-Tianjin-Hebei (BTH) region. We found that the lockdown measures did have an obvious effect on air quality. The air quality index (AQI) was reduced by 15.2%, the concentration of NO2, PM10, PM2.5, and CO were reduced by 37.8%, 33.6%, 21.5%, and 20.4% respectively. At the same time, we further explored the heterogeneous effects of travel restrictions and the control measure intensity on air quality. We found that the traffic restrictions, especially the restriction of intra-city travel intensity (TI), exhibited a significant heterogeneous effect on NO2 with a decrease of approximately 13.6%, and every one-unit increase in control measures intensity reduced the concentration of air pollutants by approximately 2-4%. This study not only provides a natural, experimental basis for control measures on air quality but also indicates an important direction for future control strategies. Importantly, determining the estimated effect helps formulate accurate and effective intervention measures on the differentiated level of air pollution, especially on extreme air pollution.

SELECTION OF CITATIONS
SEARCH DETAIL